Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(6)2022 06 01.
Article in English | MEDLINE | ID: covidwho-1869831

ABSTRACT

The unprecedented pandemic COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with bats as original reservoirs, has once again highlighted the importance of exploring the interface of wildlife diseases and human health. In this study, we identified a novel Betacoronavirus from bank voles (Myodes glareolus) in Grimsö, Sweden, and this virus is designated as Grimso virus. Repeated detection over three years and an overall prevalence of 3.4% suggest that the virus commonly occurs in bank voles. Furthermore, phylogenetic analyses indicate that the Grimso virus belongs to a highly divergent Embecovirus lineage predominantly associated with bank voles. Given that bank voles are one of the most common rodent species in Sweden and Europe, our findings indicate that Grimso virus might be circulating widely in bank voles and further point out the importance of sentinel surveillance of coronaviruses in wild small mammalian animals, especially in wild rodents.


Subject(s)
COVID-19 , Rodent Diseases , Animals , Arvicolinae , COVID-19/veterinary , Phylogeny , SARS-CoV-2/genetics , Sweden/epidemiology
2.
Emerg Infect Dis ; 27(4): 1193-1195, 2021 04.
Article in English | MEDLINE | ID: covidwho-1146550

ABSTRACT

After experimental inoculation, severe acute respiratory syndrome coronavirus 2 infection was confirmed in bank voles by seroconversion within 8 days and detection of viral RNA in nasal tissue for up to 21 days. However, transmission to contact animals was not detected. Thus, bank voles are unlikely to establish effective transmission cycles in nature.


Subject(s)
Arvicolinae , COVID-19 , Disease Transmission, Infectious , Rodent Diseases , Seroconversion , Virus Shedding , Animals , Antibodies, Viral , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Serological Testing , Disease Models, Animal , Disease Susceptibility , Nasal Mucosa/virology , Rodent Diseases/immunology , Rodent Diseases/transmission , Rodent Diseases/virology
3.
J Med Virol ; 92(9): 1649-1656, 2020 09.
Article in English | MEDLINE | ID: covidwho-27178

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the recent COVID-19 public health crisis. Bat is the widely believed original host of SARS-CoV-2. However, its intermediate host before transmitting to humans is not clear. Some studies proposed pangolin, snake, or turtle as the intermediate hosts. Angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2, which determines the potential host range for SARS-CoV-2. On the basis of structural information of the complex of human ACE2 and SARS-CoV-2 receptor-binding domain (RBD), we analyzed the affinity to S protein of the 20 key residues in ACE2 from mammal, bird, turtle, and snake. Several ACE2 proteins from Primates, Bovidae, Cricetidae, and Cetacea maintained the majority of key residues in ACE2 for associating with SARS-CoV-2 RBD. The simulated structures indicated that ACE2 proteins from Bovidae and Cricetidae were able to associate with SARS-CoV-2 RBD. We found that nearly half of the key residues in turtle, snake, and bird were changed. The simulated structures showed several key contacts with SARS-CoV-2 RBD in turtle and snake ACE2 were abolished. This study demonstrated that neither snake nor turtle was the intermediate hosts for SARS-CoV-2, which further reinforced the concept that the reptiles are resistant against infection of coronavirus. This study suggested that Bovidae and Cricetidae should be included in the screening of intermediate hosts for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Receptors, Virus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Animals , Arvicolinae , Cattle , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Receptors, Virus/chemistry , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Structure-Activity Relationship , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL